Analysis of the readiness to buy cultural tourism online by means of latent variable models


  • J. I. Pulido-Fernández University of Jaén
  • M. Sánchez-Rivero University of Extremadura, Badajoz



internet, purchase online, latent class analysis, conditional probabilities, segmentation


The offer of tourism products online has increased considerably in recent years. The degree of acceptance of this new form of purchasing tourism products and services on the demand side is influenced by variables of different nature. While today's tourists routinely use online consultation for any particular destination, online booking is not as common as might have been expected, and actually purchasing online is decidedly uncommon. The aim of this study was to determine which aspects most affect the readiness to buy tourism products online. To this end, the data from a survey were used as input to different latent models with errors of measurement to segment demand in terms of attitude towards online purchases of tourism products and services.


AIMC (Asociación para la Investigación de Medios de Comunicación) (2009). Navegantes en la Red. Febrero 2009.

Booth, M. and Philip G. (1997), “Technology, competencies and competitiveness: The case for reconfigurable and flexible strategies”, Journal of Business Research, 41: 29‐40.

Buhalis, D. (1998). Strategic use of information technologies in the tourism industry. Tourism Management, 19(5), 409‐421.

Buhalis, D. (2003), eTourism: Information Technology for Strategic Tourism Management. Essex, United Kingdom: Prentice Hall.

Chen, C. (2006), “Identifying significant factors influencing consumer trust in an online travel site”, Information Technology & Tourism, II, 8: 197‐214.

Clogg, C.C. (1995), Latent class models, in G. Arminger, C.C. Clogg & M.E. Sobel, Handbook of Statistical Modelling for the Social and Behavioural Sciences. New York: Plenum Press.

Clogg, C.C. and Sawyer, D.O. (1981), A comparison of alternative models for analyzing the scalability of response patterns, in S. Leinhardt, Sociological Methodology. San Francisco: Josey‐Bass.

Cronin, B. and McKim, G. (1996), “Markets, competition and intelligence on the World Wide Web”, Competitive Intelligence Review, I, 7: 45‐51.

Dayton, C.M. (1998), Latent Class Scaling Analysis. Sage University Papers Series on Quantitative Applications in the Social Sciences, 07‐126, Thousand Oaks, CA: Sage.

Dayton, C.M. and Macready, G.B. (1976), “A probabilistic model for the validation of behavioural hierarchies”, Psychometrika, 41: 189‐204.

Dayton, C.M., and Macready, G.B. (1980), “A scaling model with response errors and intrinsically unscalable respondents”, Psychometrika, 45: 343‐356.

Denning, P.J. and Rous, B. (1995), The ACM electronic publishing plan. Communications of the ACM, IV, 38: 97‐103.

Dolnicar, S. (2007), Market Segmentation in Tourism, in A. Woodside and D. Martin, Tourism Management, Analysis, Behaviour and Strategy, Cambridge: CABI.

Forsythe, S. and Shi, B. (2003), “Consumer patronage and risk perceptions in Internet shopping”, Journal of Business Research, 56: 867‐875.

García, G. and Sancho, A. (2006), La importancia de los servicios de Internet en los viajes turísticos de los españoles entre las Comunidades Autónomas. Actas VI Congreso “Turismo y Tecnologías de la Información y las Comunicaciones” TURITEC 2006, Málaga.

Grewal, D. et al. (2004), “Internet retailing: enablers, limiters and market consequences”, Journal of Business Research, 57: 703‐713.

Guttman, L. (1947), “On Festinger’s evaluation of scale analysis”, Psychological Bulletin, 44:451‐465.

Hae, Y.L. et al. (2007), “A study of the impact of personal innovativeness on online travel shopping behaviour. A case study of Korean travellers” Tourism Management, III, 28: 886‐

Jupiter Research (2006), Internet travel models, Jupiter Research (April, 2006).

Kamarulzaman, Y. (2007), “Adoption of travel e‐shopping in the UK international”, Journal of Retail & Distribution Management, IX, 35: 703‐719.

Kim, W.G. et al. (2006), “Determinants of Chinese hotel customers’ e‐satisfaction and purchase intentions”, Tourism Management, V, 27: 890‐900.

Kuhlmeier, D. and Knight, G. (2005), “Antecedents to Internet‐based purchasing: a multinational study”, International Marketing Review, IV, 22: 460‐473.

Laroche, M. et al. (2003), “How intangibility affects perceived risk: the moderating role of knowledge and involvement”, Journal of Services Marketing, II, 17: 122‐140.

Lazarsfeld, P.F. (1950a), The logical and mathematical foundations of latent structure analysis, in S.A. Stouffer et al., Measurement and Prediction. Princeton, NJ: Princeton University Press.

Lazarsfeld, P.F. (1950b), The interpretation and computation of some latent structures, in S.A. Stouffer et al., Measurement and Prediction. Princeton, NJ: Princeton University Press.

Lazarsfeld, P.F. and Henry, N.W. (1968), Latent Structure Analysis. Boston: Houghton Mifflin.

Lee, H.‐H. et al. (2006), “The role of technology acceptance model in explaining effects of image interactivity technology on consumer responses”, International Journal of Retail & Distribution Management, VIII, 34: 621‐644.

Lubbe, B. (2007), “The effect of Internet apprehension and website satisfaction on air travellers’ adoption of an airline’s website”, Journal of Air Transport Management, II, 13:75‐80.

McCutcheon, A.L. (1987), Latent Class Analysis. Sage University Papers Series on Quantitative Applications in the Social Sciences, 07‐64. Thousand Oaks, CA: Sage.

Observatorio Nacional de las Telecomunicaciones y de la SI (2008), Estudio sobre Comercio Electrónico B2C, Madrid: Ministerio de Industria Turismo y Comercio.

Proctor, C.H. (1970), “A probabilistic formulation and statistical analysis of Guttman scaling”, Psychometrika, 35: 73‐78.

Pulido, J.I. and Sánchez, M. (2010), “Attitudes of the Cultural Tourist. A Latent Segmentation Approach”, Journal of Cultural Economics, II, 34: 111‐129.

Schertler, W. (1998), Virtual enterprises in tourism: folklore and facts: Conceptual challenges for academic research, in D. Buhalis et al., Information and Communication Technologies Tourism, Springer.

Sheldon, P. (2007), Tourism Information Technolog, in L. Dwyer and D. Forsyth, International Handbook on the Economy of Tourism, Cheltenham: Edward Elgar.

Smith, W. (1956), “Product Differentiation and Market Segmentation as Alternative Marketing Strategies”, Journal of Marketing, 21: 3‐8.

Suárez, L. et al. (2007), “Relationship marketing and information communication technologies: analysis of retail travel agencies”, Journal of Travel Research, IV, 45: 453‐463.

Suárez, L., Vázquez, R. and Díaz, A.M. (2004), Marketing de relaciones: estrategia para el logro de posiciones ventajosas en el sector turístico, XIV Congreso Anual de ACEDE, Murcia.

Vázquez, R. et al. (2008), La actividad de las agencias de viaje, in D. López and J. I. Pulido, La actividad turística española en 2007 (edición 2008). Jaén: Centro de Estudios Ramón Areces, S. A. y Asociación Española de Expertos Científicos en Turismo (AECIT).

Vermunt, J.K. (1997), Log‐linear models for event histories, Advanced Quantitative Techniques in the Social Sciences Series, volume 8, Sage Publications, Thousand Oaks.

Werthner, H., and Klein, S. (1999), Information Technology and Tourism. A Challenging Relationship, Vienna: Springer Verlag.




How to Cite

Pulido-Fernández, J. I., & Sánchez-Rivero, M. (2011). Analysis of the readiness to buy cultural tourism online by means of latent variable models. Almatourism - Journal of Tourism, Culture and Territorial Development, 1(2), 1–15.